5th International Workshop on Emerging Technologies for 5G Wireless Cellular Networks

In conjunction with IEEE GLOBECOM 2016, Sunday, December 4, 2016, Washington, DC, USA, http://wcsp.eng.usf.edu/5g/2016/

Workshop Chairs
Wei Yu, University of Toronto, Canada
Tommy Svensson, Chalmers U. of Technology, Sweden
Lingjia Liu, University of Kansas, USA

Technical Program Chairs
Halim Yanikomeroglu, Carleton University, Canada
Charlie (Jianzhong) Zhang, Samsung Electronics, USA
Peiying Zhu, Huawei Technologies, Canada

Keynote Speakers
TBA

Panel Program
TBA

Technical Program Committee

- Abdulkearem Adinoyi, Carleton University
- Raviraj Adve, University of Toronto
- Ibrahim Altunbas, Istanbul Technical University
- Sergey Andreev, Tampere University of Technology
- Imran Ansari, Texas A&M University at Qatar (TAMUQ)
- Jonathan Ashdown, U.S. Air Force Research Lab. (AFRL)
- Erdem Balta, InterDigital
- Anantharaman Balasubramaniam, Interdigital Communications
- Hadi Baligh, Huawei Technologies Canada co. Ltd.
- Federico Boccardi, Ofcom
- Shengrong Bu, University of Glasgow
- Daniel Calabuig, Universitat Politècnica de València
- Houdu Chafioui, INPT Rabat
- Rong-Rong Chen, University of Utah
- Runhua Chen, China Academy of Telecomm. Technology
- Julhan Cheng, University of British Columbia
- Hasysam Dahrouj, Eftel University
- Oussama Damen, University of Waterloo
- Zhiguo Ding, Lancaster University
- Qingshe Du, Xi’an Jiaotong University
- Lalitvy Durak-Atu, Yildiz Technical University
- Salman Durrani, The Australian National University
- Ozgur Erug, Gazi University
- Carlo Fischione, KTH
- Ramy Gohary, Carleton University
- David Gonzalez G, Aalto University
- Ekram Hossain, University of Manitoba
- Kamronsh Hosseini, Qualcomm Inc.
- Salama Iki, Lakehead University
- Hazal Inaltekin, Antalya International University
- Omneya Isea, Communications Research Centre Canada
- Gunes Karabulut Kurt, Istanbul Technical University
- Melmet Kemail Karakayali, Bell Labs, Alcatel-Lucent
- Wioleta Kryszym, University of Alberta / TRLabs
- Michel Kelhdjandan, State University of New York at Buffalo
- Yicheng Lin, University of Toronto
- Liang Liu, University of Toronto
- Liangming Ma, Interdigital
- Behrouz Makki, Chalmers University of Technology
- Nicholas Mastronardi, University at Buffalo
- Hamid Mehnpooyan, Boise State University
- Keivan Navaie, Lancaster University
- Apostolos Papathanassiou, Intel Corporation
- Nikolaos Pappas, Linkoping University
- Benoît Pelletier, InterDigital Canada
- Yinan Qi, Samsung R & D Institute UK
- Sandra Roger, Universitat Politècnica de València
- Hamid Sareed, Tabiat Modares University
- Karim Seddik, American University in Cairo
- Nima Seifi, Ericsson Research
- Cong Shen, University of Science and Technology of China
- Gokul Sraharan, Rutgers University
- Lexzek Szczecinski, INRS-EMT
- Chintu Tellambura, University of Alberta
- Milos Tesaorovic, Samsung Electronics R&D Institute UK
- Antti Tolli, University of Oulu
- Stefan Valentin, Huawei Technologies
- Xianbin Wang, University of Western Ontario
- Joerg Widmer, IMDEA Networks Institute
- Jingzian Wu, University of Arkansas
- Xiaodong Xu, Beijing Univ. of Posts and Telecommunications
- Yang Yi, University of Kansas
- Di Yuan, Linkoping University
- Wolfgang Zawars, Nokia Siemens Networks GmbH & Co KG
- Yaming Zou, Technische Universität Dresden

Important Dates

- Full Paper Submission: 1 July 2016, 11:59 pm (NYT)
- Acceptance Notification: 1 September 2016, 11:59 pm (NYT)
- Camera-Ready Submission: 1 October 2016, 11:59 pm (NYT)
- Workshop: 4 December 2016

Submit papers using EDAS: https://edas.info/N22545
Authors should follow Globecom submission guidelines (maximum 6 pages).

Call for papers

The wireless cellular network has been one of the most successful communications technologies of the last three decades. The advent of smartphones and tablets over the past several years has resulted in an exponential growth of data traffic over the cellular network not seen in previous generations. With the proliferation of more smart terminals communicating with servers and each other via broadband wireless networks, numerous new applications have also emerged to take advantage of wireless connectivity. As the fourth generation (4G) networks, namely 3GPP LTE-A, mature and become great commercial success, the research community is now increasingly looking beyond 4G and into future 5G technologies both in standardization body such as 3GPP, and in research programs such as 5GPPP in EU Horizon2020.

Fundamental requirements that have emerged for radio access networks in the 2020 and beyond era include: 1) Capabilities for supporting massive capacity and massive connectivity; 2) Support for an increasingly diverse set of services, application and users – all with extremely diverging requirements for work and life; 3) Flexible and efficient use of all available non-contiguous spectrum for wildly different network deployment scenarios. These requirements bring a number of challenges to the design of future wireless networks, including the capability of supporting diverse traffic characteristics, massive connectivity due to massive number of devices (including machine-type terminals), and the densification and heterogeneity of such networks.

This workshop will be a venue to brainstorm on and to identify the emerging concepts, technologies, and analytical tools for 5G cellular networks. We aim to bring together leading researchers in both academia and industry, and to provide a forum for researchers from diverse backgrounds to share their views on what 5G should be and to have an open dialogue on the future of wireless research. The goal is to identify key 5G technology drivers that can deliver significant capacity, coverage and user-experience benefits. Topics of interest include, but are not limited to the following:

- Novel radio access network (RAN) architectures
 - HetNets with overlap of high- and low-power nodes
 - CoMP (coordinated multi-point) transmission and reception
 - Distributed antenna systems
 - Advanced relaying, user terminal relaying
 - Small cell deployment, femtocells, picocells
 - Terminal intelligence, Context awareness
- Advanced radio resource management (RRM) techniques
 - Interference management, interference awareness
 - Inter-cell interference coordination (ICIC, eICIC)
 - Artificial intelligence in wireless communications
 - Congestion management
- Emerging technologies in physical layer
 - Interference-robust air interface
 - Higher-order massive MIMO, Active antenna systems (AAS)
 - Multiuser communications, Network information theory
 - Novel modulation and coding schemes, Waveforms beyond OFDM(A)
- Novel services
 - Enhanced voice and video, Telepresence
 - Machine-to-machine (M2M), machine-type communications (MTC)
 - Point-to-point (P2P) / device-to-device (D2D) communications
- mmWave communications
 - Channel characteristics and modeling, Feasibility studies
 - Initial access; Beamforming, beam tracking; Mobility solutions;
 - System design aspects
- Energy efficiency
 - Energy consumption models
 - Joint RF-baseband optimization; End-to-end energy optimization
- Spectrum
 - Aggregation of intra and inter-band carriers for both FDD and TDD
 - Cognitive radio and dynamic spectrum access,
 - Adaptive radio access techniques
- Prototype and test-bed for emerging 5G technologies